{ "id": "1812.06032", "version": "v1", "published": "2018-12-14T17:12:58.000Z", "updated": "2018-12-14T17:12:58.000Z", "title": "The extremal $p$-spectral radius of Berge-hypergraphs", "authors": [ "Liying Kang", "Lele Liu", "Linyuan Lu", "Zhiyu Wang" ], "comment": "15 pages", "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph. We say that a hypergraph $H$ is a Berge-$G$ if there is a bijection $\\phi: E(G)\\to E(H)$ such that $e\\subseteq \\phi(e)$ for all $e\\in E(G)$. For any $r$-uniform hypergraph $H$ and a real number $p\\geq 1$, the $p$-spectral radius $\\lambda^{(p)}(H)$ of $H$ is defined as \\[ \\lambda^{(p)}(H):=\\max_{{\\bf x}\\in\\mathbb{R}^n,\\,\\|{\\bf x}\\|_p=1} r\\sum_{\\{i_1,i_2,\\ldots,i_r\\}\\in E(H)} x_{i_1}x_{i_2}\\cdots x_{i_r}. \\] In this paper, we study the $p$-spectral radius of Berge-$G$ hypergraphs. We determine the $3$-uniform hypergraphs with maximum $p$-spectral radius for $p\\geq 1$ among Berge-$G$ hypergraphs when $G$ is a path, a cycle or a star.", "revisions": [ { "version": "v1", "updated": "2018-12-14T17:12:58.000Z" } ], "analyses": { "subjects": [ "05C65", "15A18" ], "keywords": [ "spectral radius", "berge-hypergraphs", "uniform hypergraph", "real number" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }