{ "id": "1812.05993", "version": "v1", "published": "2018-12-14T15:54:06.000Z", "updated": "2018-12-14T15:54:06.000Z", "title": "Galois extensions and a Conjecture of Ogg", "authors": [ "Krzysztof Klosin", "Mihran Papikian" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "Let $N=pq$, where $p=2,3,5,7,13$ and $q\\neq p$ is another prime. We propose a general strategy for proving a conjecture of Ogg about isogenies from the new quotient of $J_0(N)$ to the Jacobian of the Shimura curve attached to the indefinite quaternion algebra over $\\mathbf{Q}$ of discriminant $N$. This strategy is based on the results of Helm and Ribet. Using this strategy, we prove a general conditional result toward Ogg's conjecture and discuss in detail the case when $N=65$.", "revisions": [ { "version": "v1", "updated": "2018-12-14T15:54:06.000Z" } ], "analyses": { "subjects": [ "11G18" ], "keywords": [ "galois extensions", "indefinite quaternion algebra", "general conditional result", "general strategy", "shimura curve" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }