{ "id": "1812.05435", "version": "v1", "published": "2018-12-13T14:09:30.000Z", "updated": "2018-12-13T14:09:30.000Z", "title": "An additive formula for multiplicities on reproducing kernel Hilbert spaces", "authors": [ "Arup Chattopadhyay", "Jaydeb Sarkar", "Srijan Sarkar" ], "comment": "Preliminary Version, Comments Welcome", "categories": [ "math.FA" ], "abstract": "In this paper, we compute the exact rank of a non-trivial co-doubly commuting submodule of analytic reproducing kernel Hilbert modules over $\\mathbb{C}[z_1,\\ldots,z_n]$. More precisely, let $\\mathcal{H} = \\mathcal{H}_{1} \\otimes \\ldots \\otimes \\mathcal{H}_{n}$ be an analytic reproducing kernel Hilbert module over $\\mathbb{C}[z_1,\\ldots,z_n]$. Let $\\mathcal{S}$ be a co-doubly commuting submodule of $\\mathcal{H}$, that is , \\[ \\mathcal{S} = (\\mathcal{Q}_1 \\otimes \\ldots \\otimes \\mathcal{Q}_n)^{\\bot}, \\] where $\\mathcal{Q}_i$ are quotient modules of $\\mathcal{H}_{i}$. Then our result states that \\[ \\mbox{rank}~\\Big(\\big(\\mathcal{Q}_1\\otimes \\cdots \\otimes \\mathcal{Q}_n\\big)^{\\perp}\\Big) = \\sum_{i=1}^n \\mbox{rank}~\\big(\\mathcal{Q}_i^{\\bot}). \\] This immediately answers an open question in the special case where $\\mathcal{H}_{i} = H^2(\\mathbb{D})$ for all $i \\in \\lbrace 1,\\ldots,n \\rbrace$ posed in [3]. As an immediate consequence we have the following observation: Let $\\mathcal{S}$ be a co-doubly commuting submodule in $H^2(\\mathbb{D}^n)$. Then for $m \\leq n$, rank ($\\mathcal{S})=m$, implies $\\mathcal{S}=\\Theta H^2(\\mathbb{D}^n)$ for some $n-m$ variables inner function $\\Theta\\in H^{\\infty}(\\mathbb{D}^{n-m})$. In particular, for $n=2$ and $m=1$ it positively meets the observations made by R. G. Douglas and R. Yang in [7].", "revisions": [ { "version": "v1", "updated": "2018-12-13T14:09:30.000Z" } ], "analyses": { "subjects": [ "47A13", "47A15", "47A16", "47M05", "46C99", "32A70" ], "keywords": [ "reproducing kernel hilbert spaces", "analytic reproducing kernel hilbert module", "additive formula", "co-doubly commuting submodule", "multiplicities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }