{ "id": "1812.05402", "version": "v1", "published": "2018-12-13T13:05:46.000Z", "updated": "2018-12-13T13:05:46.000Z", "title": "Existence of limiting distribution for affine processes", "authors": [ "Peng Jin", "Jonas Kremer", "Barbara RĂ¼diger" ], "comment": "27 papes", "categories": [ "math.PR" ], "abstract": "In this paper, sufficient conditions are given for the existence of limiting distribution of a conservative affine process on the canonical state space $\\mathbb{R}_{\\geqslant0}^{m}\\times\\mathbb{R}^{n}$, where $m,\\thinspace n\\in\\mathbb{Z}_{\\geqslant0}$ with $m+n>0$. Our main theorem extends and unifies some known results for OU-type processes on $\\mathbb{R}^{n}$ and one-dimensional CBI processes (with state space $\\mathbb{R}_{\\geqslant0}$). To prove our result, we combine analytical and probabilistic techniques; in particular, the stability theory for ODEs plays an important role.", "revisions": [ { "version": "v1", "updated": "2018-12-13T13:05:46.000Z" } ], "analyses": { "subjects": [ "60J25", "60G10" ], "keywords": [ "limiting distribution", "main theorem extends", "one-dimensional cbi processes", "conservative affine process", "important role" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }