{ "id": "1812.04871", "version": "v1", "published": "2018-12-12T10:05:08.000Z", "updated": "2018-12-12T10:05:08.000Z", "title": "Maximal $τ_d$-rigid pairs", "authors": [ "Karin M. Jacobsen", "Peter Jorgensen" ], "comment": "12 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathscr T$ be a $2$-Calabi--Yau triangulated category, $T$ a cluster tilting object with endomorphism algebra $\\Gamma$. Consider the functor $\\mathscr T( T,- ) : \\mathscr T \\rightarrow \\mod \\Gamma$. It induces a bijection from the isomorphism classes of cluster tilting objects to the isomorphism classes of support $\\tau$-tilting pairs. This is due to Adachi, Iyama, and Reiten. The notion of $( d+2 )$-angulated categories is a higher analogue of triangulated categories. We show a higher analogue of the above result, based on the notion of maximal $\\tau_d$-rigid pairs.", "revisions": [ { "version": "v1", "updated": "2018-12-12T10:05:08.000Z" } ], "analyses": { "subjects": [ "16G10", "18E10", "18E30", "18E35" ], "keywords": [ "rigid pairs", "cluster tilting object", "isomorphism classes", "higher analogue", "endomorphism algebra" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }