{ "id": "1812.04707", "version": "v1", "published": "2018-12-11T21:48:36.000Z", "updated": "2018-12-11T21:48:36.000Z", "title": "Singular symplectic cotangent bundle reduction of gauge field theory", "authors": [ "Tobias Diez", "Gerd Rudolph" ], "categories": [ "math-ph", "math.MP", "math.SG" ], "abstract": "We prove a theorem on singular symplectic cotangent bundle reduction in the Fr\\'echet setting and apply it to Yang-Mills-Higgs theory with special emphasis on the Higgs sector of the Glashow-Weinberg-Salam model. For the latter model we give a detailed description of the reduced phase space and show that the singular structure is encoded in a finite-dimensional Lie group action.", "revisions": [ { "version": "v1", "updated": "2018-12-11T21:48:36.000Z" } ], "analyses": { "subjects": [ "37K05", "53D20", "70S05", "70S10", "70S15", "58E40" ], "keywords": [ "singular symplectic cotangent bundle reduction", "gauge field theory", "finite-dimensional lie group action", "yang-mills-higgs theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }