{ "id": "1812.04495", "version": "v1", "published": "2018-12-10T10:50:53.000Z", "updated": "2018-12-10T10:50:53.000Z", "title": "On Liouville type theorem for the stationary magnetohydrodynamics system", "authors": [ "Dongho Chae", "Joerg Wolf" ], "comment": "12 pages. arXiv admin note: text overlap with arXiv:1811.09051", "categories": [ "math.AP" ], "abstract": "In this paper we prove a Liouville type theorem for the stationary magnetohydrodynamics(MHD) system in $\\Bbb R^3$. Let $(v, B, p)$ be a smooth solution to the stationary MHD equations in $\\Bbb R^3$. We show that if there exist smooth matrix valued potential functions ${\\bf \\Phi}$, ${\\bf \\Psi}$ such that $ \\nabla \\cdot {\\bf \\Phi} =v$ and $\\nabla \\cdot {\\bf \\Psi}= B$, whose $L^6$ mean oscillations have certain growth condition near infinity, namely $$-\\!\\!\\!\\!\\!\\int_{B(r)} |\\mathbf{\\Phi} - \\mathbf{\\Phi}_{ B(r)} |^6 dx + -\\!\\!\\!\\!\\!\\int_{B(r)} |\\mathbf{\\Psi}- \\mathbf{\\Psi}_{ B(r)} |^6 dx\\le C r\\quad \\forall 1< r< +\\infty,$$ then $v=B= 0$ and $p=$constant.", "revisions": [ { "version": "v1", "updated": "2018-12-10T10:50:53.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D05", "76D03" ], "keywords": [ "liouville type theorem", "stationary magnetohydrodynamics system", "smooth matrix valued potential functions", "stationary mhd equations", "smooth solution" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }