{ "id": "1812.04163", "version": "v1", "published": "2018-12-11T00:40:36.000Z", "updated": "2018-12-11T00:40:36.000Z", "title": "KAM tori are no more than sticky", "authors": [ "Bassam Fayad", "David Sauzin" ], "comment": "35 pages", "categories": [ "math.DS" ], "abstract": "When a Gevrey smooth perturbation is applied to a quasi-convex integrable Hamiltonian, it is known that the KAM invariant tori that survive are sticky, that is, doubly exponentially stable. We show by examples the optimality of this effective stability.", "revisions": [ { "version": "v1", "updated": "2018-12-11T00:40:36.000Z" } ], "analyses": { "subjects": [ "37J25" ], "keywords": [ "kam tori", "gevrey smooth perturbation", "kam invariant tori", "quasi-convex integrable hamiltonian", "optimality" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }