{ "id": "1812.03642", "version": "v1", "published": "2018-12-10T06:34:31.000Z", "updated": "2018-12-10T06:34:31.000Z", "title": "Solutions of the Yamabe Equation By Lyapunov-Schmidt Reduction", "authors": [ "Jorge Davila", "Isidro H. Munive" ], "categories": [ "math.AP" ], "abstract": "Given any closed Riemannian manifold $(M,g)$ we use the Lyapunov-Schmidt finite-dimensional reduction method to prove multiplicity results for positive solutions of a subcritical Yamabe type equation on $(M,g)$. If $(N,h)$ is a closed Riemannian manifold of constant positive scalar curvature our result gives multiplicity results for the Yamabe equation on the Riemannian product $(M\\times N, g + \\epsilon^{2} h)$, for $\\epsilon >0$ small.", "revisions": [ { "version": "v1", "updated": "2018-12-10T06:34:31.000Z" } ], "analyses": { "keywords": [ "yamabe equation", "lyapunov-schmidt reduction", "closed riemannian manifold", "multiplicity results", "lyapunov-schmidt finite-dimensional reduction method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }