{ "id": "1812.03433", "version": "v1", "published": "2018-12-09T05:19:41.000Z", "updated": "2018-12-09T05:19:41.000Z", "title": "Torus actions on oriented manifolds of generalized odd type", "authors": [ "Donghoon Jang" ], "categories": [ "math.DG" ], "abstract": "Landweber and Stong prove that if a closed spin manifold $M$ admits a smooth $S^1$-action of odd type, then its signature $\\mathrm{sign}(M)$ vanishes. In this paper, we extend the result to a torus action on a closed oriented manifold with generalized odd type.", "revisions": [ { "version": "v1", "updated": "2018-12-09T05:19:41.000Z" } ], "analyses": { "keywords": [ "generalized odd type", "torus action", "closed spin manifold", "closed oriented manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }