{ "id": "1812.03193", "version": "v1", "published": "2018-12-07T19:34:29.000Z", "updated": "2018-12-07T19:34:29.000Z", "title": "Weighted unipolar Hardy inequality with optimal constant", "authors": [ "Anna Canale", "Francesco Pappalardo", "Ciro Tarantino" ], "categories": [ "math.AP" ], "abstract": "\\begin{abstract} We state the following weighted Hardy inequality \\begin{equation*} c_\\mu\\int_{{\\R}^N}\\frac{\\varphi^2 }{|x|^2}\\, d\\mu\\le \\int_{{\\R}^N} |\\nabla\\varphi|^2 \\, d\\mu + K \\int_{\\R^N}\\varphi^2 \\, d\\mu \\quad \\forall\\, \\varphi \\in H_\\mu^1 %\\qquad c\\le c_\\mu, \\end{equation*} in the context of the study of the Kolmogorov operators \\begin{equation*} Lu=\\Delta u+\\frac{\\nabla \\mu}{\\mu}\\cdot\\nabla u, \\end{equation*} with $\\mu$ probability density in $\\R^N$, and of the related evolution problems. We prove the optimality of the constant $c_\\mu$ and state existence and nonexistence results following the Cabr\\'e-Martel's approach \\cite{CabreMartel} and using results stated in \\cite{GGR, CGRT}. \\end{abstract}", "revisions": [ { "version": "v1", "updated": "2018-12-07T19:34:29.000Z" } ], "analyses": { "subjects": [ "35K15", "35K65", "35B25", "34G10", "47D03" ], "keywords": [ "weighted unipolar hardy inequality", "optimal constant", "weighted hardy inequality", "kolmogorov operators", "cabre-martels approach" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }