{ "id": "1812.02411", "version": "v1", "published": "2018-12-06T09:19:50.000Z", "updated": "2018-12-06T09:19:50.000Z", "title": "Total variation distance estimates via $L^2$-norm for polynomials in log-concave random vectors", "authors": [ "Egor Kosov" ], "categories": [ "math.PR", "math.FA" ], "abstract": "The paper provides an estimate of the total variation distance between distributions of polynomials defined on a space equipped with a logarithmically concave measure in terms of the $L^2$-distance between these polynomials.", "revisions": [ { "version": "v1", "updated": "2018-12-06T09:19:50.000Z" } ], "analyses": { "keywords": [ "total variation distance estimates", "log-concave random vectors", "polynomials", "logarithmically concave measure", "distributions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }