{ "id": "1812.02077", "version": "v1", "published": "2018-12-05T16:15:23.000Z", "updated": "2018-12-05T16:15:23.000Z", "title": "Ergodicity via continuity", "authors": [ "Ivan Podvigin" ], "categories": [ "math.DS" ], "abstract": "We show that the ergodicity of an aperiodic automorphism of a Lebesgue space is equivalent to the continuity of a certain map on a metric Boolean algebra. A related characterization is also presented for periodic and totally ergodic transformations", "revisions": [ { "version": "v1", "updated": "2018-12-05T16:15:23.000Z" } ], "analyses": { "subjects": [ "37A25", "28D05", "54C05" ], "keywords": [ "ergodicity", "continuity", "metric boolean algebra", "lebesgue space", "totally ergodic transformations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }