{ "id": "1812.01981", "version": "v1", "published": "2018-12-05T13:18:46.000Z", "updated": "2018-12-05T13:18:46.000Z", "title": "On Products of Shifts in Arbitrary Fields", "authors": [ "Audie Warren" ], "categories": [ "math.CO", "math.NT" ], "abstract": "We adapt the approach of Rudnev, Shakan, and Shkredov to prove that in an arbitrary field $\\mathbb{F}$, for all $A \\subset \\mathbb{F}$ finite with $|A| < p^{1/4},$ we have $$|A(A+1)| \\gtrsim |A|^{11/9}, \\qquad |AA| + |(A+1)(A+1)| \\gtrsim |A|^{11/9}.$$ This improves upon the exponent of $6/5$ given by an incidence theorem of Stevens and de Zeeuw.", "revisions": [ { "version": "v1", "updated": "2018-12-05T13:18:46.000Z" } ], "analyses": { "keywords": [ "arbitrary field", "incidence theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }