{ "id": "1812.01838", "version": "v1", "published": "2018-12-05T07:20:45.000Z", "updated": "2018-12-05T07:20:45.000Z", "title": "Existence of infinitely many solutions for a nonlocal elliptic PDE involving singularity", "authors": [ "S. Ghosh", "D. Choudhuri" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "In this article, we will prove the existence of infinitely many positive weak solutions to the following nonlocal elliptic PDE. \\begin{align} (-\\Delta)^s u&= \\frac{\\lambda}{u^{\\gamma}}+ f(x,u)~\\text{in}~\\Omega,\\nonumber u&=0~\\text{in}~\\mathbb{R}^N\\setminus\\Omega,\\nonumber \\end{align} where $\\Omega$ is an open bounded domain in $\\mathbb{R}^N$ with Lipschitz boundary, $N>2s$, $s\\in (0,1)$. We will employ variational techniques to show the existence of infinitely many weak solutions of the above problem.", "revisions": [ { "version": "v1", "updated": "2018-12-05T07:20:45.000Z" } ], "analyses": { "subjects": [ "35J20", "35J35", "35J60", "35J75" ], "keywords": [ "nonlocal elliptic pde", "singularity", "employ variational techniques", "open bounded domain", "lipschitz boundary" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }