{ "id": "1812.01832", "version": "v1", "published": "2018-12-05T06:46:30.000Z", "updated": "2018-12-05T06:46:30.000Z", "title": "The maximum number of cliques in graphs without large matchings", "authors": [ "Jian Wang" ], "categories": [ "math.CO" ], "abstract": "Given two graphs $T$ and $F$, the maximum number of copies of $T$ in an $F$-free graph on $n$ vertices is denoted by $ex(n,T,F)$ and is called the Generalized Tur\\'{a}n number. When $T=K_2$, it reduces to the classical Tur\\'{a}n number $ex(n,F)$. In 1961, Erd\\H{o}s and Gallai proved that \\[ ex(n,M_{k+1})=\\max\\left\\{\\binom{2k+1}{2}, \\binom{k}{2}+k(n-k)\\right\\}, \\] where $M_{k+1}$ is a matching of size $k+1$. In this note, we prove that for any $s\\geq 2$, \\[ ex(n,K_s,M_{k+1})=\\max\\left\\{\\binom{2k+1}{s}, \\binom{k}{s}+(n-k)\\binom{k}{s-1}\\right\\}. \\]", "revisions": [ { "version": "v1", "updated": "2018-12-05T06:46:30.000Z" } ], "analyses": { "keywords": [ "maximum number", "large matchings", "free graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }