{ "id": "1812.01415", "version": "v1", "published": "2018-12-04T13:57:02.000Z", "updated": "2018-12-04T13:57:02.000Z", "title": "A note on the maximum of the Riemann zeta function on the 1-line", "authors": [ "Winston Heap" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "We investigate the relationship between the maximum of the zeta function on the 1-line and the maximal order of $S(t)$, the error term in the number of zeros up to height $t$. We show that the conjectured upper bounds on $S(t)$ along with the Riemann hypothesis imply a conjecture of Littlewood that $\\max_{t\\in [1,T]}|\\zeta(1+it)|\\sim e^\\gamma\\log\\log T$. The relationship in the region $1/2<\\sigma<1$ is also investigated.", "revisions": [ { "version": "v1", "updated": "2018-12-04T13:57:02.000Z" } ], "analyses": { "keywords": [ "riemann zeta function", "maximal order", "error term", "riemann hypothesis", "conjectured upper bounds" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }