{ "id": "1812.01327", "version": "v1", "published": "2018-12-04T10:56:30.000Z", "updated": "2018-12-04T10:56:30.000Z", "title": "Three nontrivial solutions of a nonlocal problem involving critical exponent", "authors": [ "Amita Soni", "D. Choudhuri" ], "categories": [ "math.AP" ], "abstract": "In this paper we will prove the existence of three nontrivial weak solutions of the following problem involving a nonlinear integro-differential operator and a term with critical exponent. \\begin{align*} \\begin{split} -\\mathscr{L}_\\Phi u & = |u|^{{p_{s}^{\\ast}}-2}u+\\lambda f(x,u)\\,\\,\\mbox{in}\\,\\,\\Omega,\\\\ u & = 0\\,\\, \\mbox{in}\\,\\, \\mathbb{R}^N\\setminus \\Omega, \\end{split} \\end{align*} Here $q\\in(p, p_s^*)$, where $p_s^*$ is the fractional Sobolev conjugate of $p$ and $-\\mathscr{L}_\\Phi $ represents a general nonlocal integro-differential operator of order $s\\in(0,1)$. This operator is possibly degenerate and covers the case of fractional $p$-Laplacian operator.", "revisions": [ { "version": "v1", "updated": "2018-12-04T10:56:30.000Z" } ], "analyses": { "subjects": [ "35J20", "35J35" ], "keywords": [ "critical exponent", "nonlocal problem", "nontrivial solutions", "general nonlocal integro-differential operator", "nonlinear integro-differential operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }