{ "id": "1812.00212", "version": "v1", "published": "2018-12-01T15:03:27.000Z", "updated": "2018-12-01T15:03:27.000Z", "title": "Continuity of composition operators in Sobolev spaces", "authors": [ "Gérard Bourdaud", "Madani Moussai" ], "categories": [ "math.FA" ], "abstract": "We prove that all the composition operators $T_f(g):= f\\circ g$, which take the Adams-Frazier space $W^{m}_{p}\\cap \\dot{W}^{1}_{mp}(\\re^n)$ to itself, are continuous mappings from $W^{m}_{p}\\cap \\dot{W}^{1}_{mp}(\\re^n)$ to itself, for every integer $m\\geq 2$ and every real number $1\\leq p<+\\infty$. The same automatic continuity property holds for Sobolev spaces $W^m_p(\\R)$ for $m\\geq 2$ and $1\\leq p<+\\infty$.", "revisions": [ { "version": "v1", "updated": "2018-12-01T15:03:27.000Z" } ], "analyses": { "keywords": [ "sobolev spaces", "composition operators", "automatic continuity property holds", "adams-frazier space", "real number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }