{ "id": "1811.12588", "version": "v1", "published": "2018-11-30T02:41:34.000Z", "updated": "2018-11-30T02:41:34.000Z", "title": "Two-term relative cluster tilting subcategories, $τ-$tilting modules and silting subcategories", "authors": [ "Panyue Zhou", "Bin Zhu" ], "comment": "24pages", "categories": [ "math.RT", "math.CT", "math.RA" ], "abstract": "Let $\\mathcal{C}$ be a triangulated category with shift functor $[1]$ and $\\mathcal{R}$ a rigid subcategory of $\\mathcal{C}$. We introduce the notions of two-term $\\mathcal{R}[1]$-rigid subcategories, two-term (weak) $\\mathcal{R}[1]$-cluster tilting subcategories and two-term maximal $\\mathcal{R}[1]$-rigid subcategories, and discuss relationship between them. Our main result shows that there exists a bijection between the set of two-term $\\mathcal{R}[1]$-rigid subcategories of $\\mathcal{C}$ and the set of $\\tau$-rigid subcategories of $\\mod\\mathcal{R}$, which induces a one-to-one correspondence between the set of two-term weak $\\mathcal{R}[1]$-cluster tilting subcategories of $\\mathcal{C}$ and the set of support $\\tau$-tilting subcategories of $\\mod\\mathcal{R}$. This generalizes the main results in \\cite{YZZ} where $\\mathcal{R}$ is a cluster tilting subcategory. When $\\mathcal{R}$ is a silting subcategory, we prove that the two-term weak $\\mathcal{R}[1]$-cluster tilting subcategories are precisely two-term silting subcategories in \\cite{IJY}. Thus the bijection above induces the bijection given by Iyama-J{\\o}rgensen-Yang in \\cite{IJY}", "revisions": [ { "version": "v1", "updated": "2018-11-30T02:41:34.000Z" } ], "analyses": { "subjects": [ "18E30", "16G20", "16G70" ], "keywords": [ "cluster tilting subcategory", "two-term relative cluster tilting subcategories", "silting subcategory", "rigid subcategory", "tilting modules" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }