{ "id": "1811.12559", "version": "v1", "published": "2018-11-30T00:53:23.000Z", "updated": "2018-11-30T00:53:23.000Z", "title": "A lower bound for the a.e. behaviour of Hausdorff dimension under vertical projections in the Heisenberg group", "authors": [ "Terence L. J. Harris" ], "comment": "14 pages", "categories": [ "math.CA", "math.MG" ], "abstract": "It is shown that for a Borel set $A$ in the Heisenberg group with $\\dim A >2$, \\[ \\dim P_{\\mathbb{V}^{\\perp}_{\\theta}} A \\geq \\begin{cases} \\frac{\\dim A}{2} &\\text{ if } \\dim A \\in \\left(2, \\frac{5}{2} \\right] \\\\ \\frac{ \\dim A(\\dim A + 2)}{4\\dim A -1} &\\text{ if } \\dim A \\in \\left( \\frac{5}{2} , 4 \\right], \\end{cases} \\] for a.e. $\\theta \\in [0,\\pi)$, where $\\dim$ refers to the Hausdorff dimension under the Kor\\'anyi metric, and $P_{\\mathbb{V}^{\\perp}_{\\theta}}$ is the vertical Heisenberg projection onto the vertical plane at angle $\\theta+ \\frac{\\pi}{2}$. This improves the known lower bounds in the range $2 < \\dim A <\\frac{12+\\sqrt{109}}{7}$.", "revisions": [ { "version": "v1", "updated": "2018-11-30T00:53:23.000Z" } ], "analyses": { "subjects": [ "28A78", "28A80" ], "keywords": [ "lower bound", "hausdorff dimension", "heisenberg group", "vertical projections", "borel set" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }