{ "id": "1811.11873", "version": "v1", "published": "2018-11-28T23:06:39.000Z", "updated": "2018-11-28T23:06:39.000Z", "title": "Triangles in $C_5$-free graphs and Hypergraphs of Girth Six", "authors": [ "Beka Ergemlidze", "Abhishek Methuku" ], "comment": "14 pages", "categories": [ "math.CO" ], "abstract": "We introduce a new approach and prove that the maximum number of triangles in a $C_5$-free graph on $n$ vertices is at most $$(1 + o(1)) \\frac{1}{3 \\sqrt 2} n^{3/2}.$$ We also show a connection to $r$-uniform hypergraphs without (Berge) cycles of length less than six, and estimate their maximum possible size.", "revisions": [ { "version": "v1", "updated": "2018-11-28T23:06:39.000Z" } ], "analyses": { "keywords": [ "free graph", "maximum number", "uniform hypergraphs", "connection" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }