{ "id": "1811.11143", "version": "v1", "published": "2018-11-27T18:09:16.000Z", "updated": "2018-11-27T18:09:16.000Z", "title": "Some convergence and optimality results of adaptive mixed methods in finite element exterior calculus", "authors": [ "Yuwen Li" ], "comment": "23 pages", "categories": [ "math.NA" ], "abstract": "In this paper, we present several new a posteriori error estimators for decoupled errors and two adaptive mixed finite element methods \\textsf{AMFEM1} and \\textsf{AMFEM2} for the Hodge Laplacian problem in finite element exterior calculus. We prove that \\textsf{AMFEM1} and \\textsf{AMFEM2} are both convergent starting from any initial coarse mesh. A suitably defined quasi error is crucial to the convergence analysis. In addition, we prove the optimality of \\textsf{AMFEM2}. The main technical contribution is a localized discrete upper bound. Comparing to existing literature, our results work on Lipschitz domains with nontrivial cohomology and provide the first norm convergence and optimality results.", "revisions": [ { "version": "v1", "updated": "2018-11-27T18:09:16.000Z" } ], "analyses": { "subjects": [ "65N30", "65N15" ], "keywords": [ "finite element exterior calculus", "adaptive mixed methods", "optimality results", "mixed finite element methods", "posteriori error estimators" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }