{ "id": "1811.10472", "version": "v1", "published": "2018-11-26T16:06:49.000Z", "updated": "2018-11-26T16:06:49.000Z", "title": "On a converse theorem for $G_2$ over finite fields", "authors": [ "Baiying Liu", "Qing Zhang" ], "categories": [ "math.RT" ], "abstract": "In this paper, we prove certain multiplicity one theorems and define twisted gamma factors for irreducible generic cuspidal representations of split $G_2$ over finite fields $k$ of odd characteristic. Then we prove the first converse theorem for exceptional groups, namely, $GL_1$ and $GL_2$-twisted gamma factors will uniquely determine an irreducible generic cuspidal representation of $G_2(k)$.", "revisions": [ { "version": "v1", "updated": "2018-11-26T16:06:49.000Z" } ], "analyses": { "keywords": [ "finite fields", "irreducible generic cuspidal representation", "first converse theorem", "define twisted gamma factors", "exceptional groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }