{ "id": "1811.10025", "version": "v1", "published": "2018-11-25T14:46:41.000Z", "updated": "2018-11-25T14:46:41.000Z", "title": "Coprime commutators in finite groups", "authors": [ "Carmine Monetta", "Raimundo Bastos" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group and let $k \\geq 2$. We prove that the coprime subgroup $\\gamma_k^*(G)$ is nilpotent if and only if $|xy|=|x||y|$ for any $\\gamma_k^*$-commutators $x,y \\in G$ of coprime orders (Theorem A). Moreover, we show that the coprime subgroup $\\delta_k^*(G)$ is nilpotent if and only if $|ab|=|a||b|$ for any powers of $\\delta_k^*$-commutators $a,b\\in G$ of coprime orders (Theorem B).", "revisions": [ { "version": "v1", "updated": "2018-11-25T14:46:41.000Z" } ], "analyses": { "keywords": [ "finite group", "coprime commutators", "coprime subgroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }