{ "id": "1811.10024", "version": "v1", "published": "2018-11-25T14:43:22.000Z", "updated": "2018-11-25T14:43:22.000Z", "title": "On the first eigenvalue of the normalized p-Laplacian", "authors": [ "Graziano Crasta", "Ilaria FragalĂ ", "Bernd Kawohl" ], "comment": "13 pages, 2 figures", "categories": [ "math.AP" ], "abstract": "We prove that, if $\\Omega$ is an open bounded domain with smooth and connected boundary, for every $p \\in (1, + \\infty)$ the first Dirichlet eigenvalue of the normalized $p$-Laplacian is simple in the sense that two positive eigenfunctions are necessarily multiple of each other. We also give a (non-optimal) lower bound for the eigenvalue in terms of the measure of $\\Omega$, and we address the open problem of proving a Faber-Krahn type inequality with balls as optimal domains.", "revisions": [ { "version": "v1", "updated": "2018-11-25T14:43:22.000Z" } ], "analyses": { "subjects": [ "49K20", "35J60", "47J10" ], "keywords": [ "first eigenvalue", "normalized p-laplacian", "faber-krahn type inequality", "first dirichlet eigenvalue", "optimal domains" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }