{ "id": "1811.09220", "version": "v1", "published": "2018-11-22T16:07:17.000Z", "updated": "2018-11-22T16:07:17.000Z", "title": "Subgroups of word hyperbolic groups in dimension $2$", "authors": [ "Shivam Arora", "Eduardo Martínez-Pedroza" ], "categories": [ "math.GR" ], "abstract": "A result of Gersten states that if $G$ is a hyperbolic group with integral cohomological dimension $\\mathsf{cd}_{\\mathbb{Z}}(G)=2$ then every finitely presented subgroup is hyperbolic. We generalize this result for the rational case $\\mathsf{cd}_{\\mathbb{Q}}(G)=2$. In particular, our result applies to the class of torsion-free hyperbolic groups $G$ with $\\mathsf{cd}_{\\mathbb{Z}}(G)=3$ and $\\mathsf{cd}_{\\mathbb{Q}}(G)=2$ discovered by Bestvina and Mess.", "revisions": [ { "version": "v1", "updated": "2018-11-22T16:07:17.000Z" } ], "analyses": { "subjects": [ "20F65", "20F67", "20F69", "20J05", "57M07" ], "keywords": [ "word hyperbolic groups", "torsion-free hyperbolic groups", "integral cohomological dimension", "gersten states", "rational case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }