{ "id": "1811.09182", "version": "v1", "published": "2018-11-22T14:12:44.000Z", "updated": "2018-11-22T14:12:44.000Z", "title": "$\\mathcal{H}_p$-theory of general Dirichlet series", "authors": [ "Andreas Defant", "Ingo Schoolmann" ], "categories": [ "math.FA" ], "abstract": "Inspired by results of Bayart on ordinary Dirichlet series $\\sum a_n n^{-s}$, the main purpose of this article is to start an $\\mathcal{H}_p$-theory of general Dirichlet series $\\sum a_n e^{-\\lambda_{n}s}$. Whereas the $\\mathcal{H}_p$-theory of ordinary Dirichlet series, in view of an ingenious identification of Bohr, can be seen as a sub-theory of Fourier analysis on the infinite dimensional torus $\\mathbb{T}^\\infty$, the $\\mathcal{H}_p$-theory of general Dirichlet series is build as a sub-theory of Fourier analysis on certain compact abelian groups, including the Bohr compactification $\\overline{\\mathbb{R}}$ of the reals. Our approach allows to extend various important facts on Hardy spaces of ordinary Dirichlet series to the much wider setting of $\\mathcal{H}_p$-spaces of general Dirichlet series.", "revisions": [ { "version": "v1", "updated": "2018-11-22T14:12:44.000Z" } ], "analyses": { "keywords": [ "general dirichlet series", "ordinary dirichlet series", "fourier analysis", "infinite dimensional torus", "compact abelian groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }