{ "id": "1811.09055", "version": "v1", "published": "2018-11-22T08:04:04.000Z", "updated": "2018-11-22T08:04:04.000Z", "title": "Handle homology of manifolds", "authors": [ "Sebastian Durst", "Hansjörg Geiges", "Marc Kegel" ], "comment": "13 pages, 8 figures", "categories": [ "math.GT", "math.AT" ], "abstract": "We give an entirely geometric proof, without recourse to cellular homology, of the fact that $\\partial^2=0$ in the chain complex defined by a handle decomposition of a given manifold. Topological invariance of the resulting `handle homology' is a consequence of Cerf theory.", "revisions": [ { "version": "v1", "updated": "2018-11-22T08:04:04.000Z" } ], "analyses": { "subjects": [ "55N35", "57R65" ], "keywords": [ "handle homology", "geometric proof", "chain complex", "handle decomposition", "cerf theory" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }