{ "id": "1811.09051", "version": "v1", "published": "2018-11-22T07:48:36.000Z", "updated": "2018-11-22T07:48:36.000Z", "title": "On Liouville type theorem for the stationary Navier-Stokes equations", "authors": [ "Dongho Chae", "Joerg Wolf" ], "comment": "10 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove a Liouville type theorem in $\\mathbb{R}^3$. Let $(u, p)$ be a smooth solution to the stationary Navier-Stokes equations in $\\mathbb{R}^3$. We show that if there exists matrix valued potential function $\\mathbf{V}$ such that $ \\nabla \\cdot \\mathbf{V} =u$, whose $L^6$ mean oscillation has certain growth condition near infinity, namely $$\\int_{B(r)} |\\mathbf{V}- \\mathbf{V}_{ B(r)} |^6 dx \\le C r\\quad \\forall 1< r< +\\infty,$$ then $u\\equiv 0$.", "revisions": [ { "version": "v1", "updated": "2018-11-22T07:48:36.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D05", "76D03" ], "keywords": [ "stationary navier-stokes equations", "liouville type theorem", "matrix valued potential function", "smooth solution", "mean oscillation" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }