{ "id": "1811.08457", "version": "v2", "published": "2018-11-20T19:35:32.000Z", "updated": "2019-12-07T12:33:47.000Z", "title": "Monochromatic Sumset Without the use of large cardinals", "authors": [ "Jing Zhang" ], "categories": [ "math.LO" ], "abstract": "We show in this note that in the forcing extension by $Add(\\omega,\\beth_{\\omega})$, the following Ramsey property holds: for any $r\\in \\omega$ and any $f: \\mathbb{R}\\to r$, there exists an infinite $X\\subset \\mathbb{R}$ such that $X+X$ is monochromatic under $f$. We also show the Ramsey statement above is true in $\\mathrm{ZFC}$ when $r=2$. This answers two questions by Komj\\'ath, Leader, Russell, Shelah, Soukup and Vidny\\'anszky.", "revisions": [ { "version": "v2", "updated": "2019-12-07T12:33:47.000Z" } ], "analyses": { "keywords": [ "large cardinals", "monochromatic sumset", "ramsey property holds", "ramsey statement", "forcing extension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }