{ "id": "1811.08090", "version": "v2", "published": "2018-11-20T06:51:39.000Z", "updated": "2018-11-26T23:19:22.000Z", "title": "A Categorification of the Vandermonde Determinant", "authors": [ "Alex Chandler" ], "comment": "19 pages, 15 figures", "categories": [ "math.CO", "math.GT" ], "abstract": "In the spirit of Bar Natan's construction of Khovanov homology, we give a categorification of the Vandermonde determinant. Given a sequence of positive integers $\\vec{x}=(x_1,...,x_n)$, we construct a commutative diagram in the shape of the Bruhat order on $S_n$ whose nodes are colored smoothings of the $2$-strand torus link $T_{2,n}$, and whose arrows are colored cobordisms. An application of a TQFT to this diagram yields a chain complex whose Euler characteristic is the Vandermonde determinant evaluated at $\\vec{x}$. A generalization to arbitrary link diagrams is given, producing categorifications of certain generalized Vandermonde determinants. We also address functoriality of this construction.", "revisions": [ { "version": "v2", "updated": "2018-11-26T23:19:22.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "categorification", "bar natans construction", "arbitrary link diagrams", "strand torus link", "address functoriality" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }