{ "id": "1811.08031", "version": "v1", "published": "2018-11-20T00:26:12.000Z", "updated": "2018-11-20T00:26:12.000Z", "title": "Combinatorial modifications of Reeb graphs and the realization problem", "authors": [ "Ɓukasz Patryk Michalak" ], "comment": "21 pages", "journal": "Discrete Comput. Geom. 65 (2021), 1038-1060", "doi": "10.1007/s00454-020-00260-6", "categories": [ "math.GT" ], "abstract": "We prove that, up to homeomorphism, any graph subject to natural necessary conditions on orientation and the number of cycles can be realized as the Reeb graph of a Morse function on a given closed manifold $M$. Along the way, we show that the Reeb number $\\mathcal{R}(M)$, i.e. the maximal number of cycles among all Reeb graphs of functions on $M$, is equal to the corank of fundamental group $\\pi_1(M)$, thus extending a previous result of Gelbukh to the non-orientable case.", "revisions": [ { "version": "v1", "updated": "2018-11-20T00:26:12.000Z" } ], "analyses": { "subjects": [ "05C76", "57M15", "05C38" ], "keywords": [ "reeb graph", "combinatorial modifications", "realization problem", "natural necessary conditions", "reeb number" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }