{ "id": "1811.07554", "version": "v2", "published": "2018-11-19T08:36:42.000Z", "updated": "2020-11-28T05:39:06.000Z", "title": "Upper Tails for Edge Eigenvalues of Random Graphs", "authors": [ "Bhaswar B. Bhattacharya", "Shirshendu Ganguly" ], "comment": "15 pages", "journal": "SIAM Journal on Discrete Mathematics, Vol. 34 (2), 1069-1083, 2020", "categories": [ "math.PR", "math.CO" ], "abstract": "The upper tail problem for the largest eigenvalue of the Erd\\H{o}s--R\\'enyi random graph $\\mathcal{G}_{n,p}$ is to estimate the probability that the largest eigenvalue of the adjacency matrix of $\\mathcal{G}_{n,p}$ exceeds its typical value by a factor of $1+\\delta$. In this note we show that for $\\delta >0$ fixed, and $p \\rightarrow 0$ such that $n^{\\frac{1}{2}} p \\rightarrow \\infty$, the upper tail probability for the largest eigenvalue of $\\mathcal{G}_{n,p}$ is $$\\exp\\left[-(1+o(1)) \\min\\left\\{\\tfrac{(1+\\delta)^2}{2}, \\delta(1+\\delta) \\right\\} n^{2}p^{2}\\log (1/p)\\right].$$ In the same regime of $p$, we show that the second largest eigenvalue $\\lambda_2( \\mathcal G_{n,p})$ of the adjacency matrix of $\\mathcal{G}_{n,p}$ satisfies $$\\mathbb P(\\lambda_2(\\mathcal G_{n,p})\\ge \\delta np) = \\exp\\left[-(1+o(1)) \\tfrac{1}{2} \\delta^2n^2p^2 \\log (1/p) \\right],$$ where $\\delta =\\delta_n < 1$ can depend on $n$ such that $\\delta n^{\\frac{1}{2}} p \\rightarrow \\infty$, which covers deviations of $\\lambda_2(\\mathcal G_{n,p})$ between $n^{\\frac{1}{2}}$ and $np$. Our arguments build on recent results on the large deviations of the largest eigenvalue and related non-linear functions of the adjacency matrix in terms of natural mean-field entropic variational problems.", "revisions": [ { "version": "v2", "updated": "2020-11-28T05:39:06.000Z" } ], "analyses": { "keywords": [ "random graph", "edge eigenvalues", "adjacency matrix", "natural mean-field entropic variational problems", "second largest eigenvalue" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }