{ "id": "1811.07454", "version": "v2", "published": "2018-11-19T02:03:07.000Z", "updated": "2018-11-25T19:19:18.000Z", "title": "Product of sumsets over arbitrary finite fields", "authors": [ "Mozhgan Mirzaei", "Thang Pham" ], "comment": "The paper has been withdrawn. Thanks to D. Koh and G. Petridis for pointing out the mistake in the main lemma", "categories": [ "math.CO" ], "abstract": "Let $\\mathbb{F}_q$ be an arbitrary finite field of order $q$. For $A, B, C, D\\subset \\mathbb{F}_q$, we show that if $|A||B||C||D|\\gg q^{5/2},$ then the set $(A-B)(C-D)$ covers a positive proportion of all elements in $\\mathbb{F}_q.$ Our result significantly improves the recent exponent $\\frac{2}{3}-\\frac{1}{13542}$ given by Murphy and Petridis.", "revisions": [ { "version": "v2", "updated": "2018-11-25T19:19:18.000Z" } ], "analyses": { "keywords": [ "arbitrary finite field", "positive proportion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }