{ "id": "1811.05631", "version": "v1", "published": "2018-11-14T04:11:17.000Z", "updated": "2018-11-14T04:11:17.000Z", "title": "On a reduction map for Drinfeld modules", "authors": [ "Wojciech Bondarewicz", "Piotr KrasoĊ„" ], "categories": [ "math.NT" ], "abstract": "In this paper we investigate a local to global principle for Mordell-Weil group defined over a ring of integers ${\\cal O}_K$ of $t$-modules that are products of the Drinfeld modules ${\\widehat\\varphi}={\\phi}_{1}^{e_1}\\times \\dots \\times {\\phi}_{t}^{e_{t}}.$ Here $K$ is a finite extension of the field of fractions of $A={\\mathbb F}_{q}[t].$ We assume that the ${\\mathrm{rank}}(\\phi)_{i})=d_{i}$ and endomorphism rings of the involved Drinfeld modules of generic characteristic are the simplest possible, i.e. ${\\mathrm{End}}({\\phi}_{i})=A$ for $ i=1,\\dots , t.$ Our main result is the following numeric criterion. Let ${N}={N}_{1}^{e_1}\\times\\dots\\times {N}_{t}^{e_t}$ be a finitely generated $A$ submodule of the Mordell-Weil group ${\\widehat\\varphi}({\\cal O}_{K})={\\phi}_{1}({\\cal O}_{K})^{e_{1}}\\times\\dots\\times {\\phi}_{t}({\\cal O}_{K})^{{e}_{t}},$ and let ${\\Lambda}\\subset N$ be an $A$ - submodule. If we assume $d_{i}\\geq e_{i}$ and $P\\in N$ such that $r_{\\cal W}(P)\\in r_{\\cal W}({\\Lambda}) $ for almost all primes ${\\cal W}$ of ${\\cal O}_{K},$ then $P\\in {\\Lambda}+N_{tor}.$ We also build on the recent results of S.Bara{\\'n}czuk \\cite{b17} concerning the dynamical local to global principle in Mordell-Weil type groups and the solvability of certain dynamical equations to the aforementioned $t$-modules.", "revisions": [ { "version": "v1", "updated": "2018-11-14T04:11:17.000Z" } ], "analyses": { "subjects": [ "11G09", "14G05", "14G25", "11J93" ], "keywords": [ "drinfeld modules", "reduction map", "mordell-weil group", "global principle", "mordell-weil type groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }