{ "id": "1811.05538", "version": "v1", "published": "2018-11-13T21:52:53.000Z", "updated": "2018-11-13T21:52:53.000Z", "title": "Extensions of convex functions with prescribed subdifferentials", "authors": [ "Daniel Azagra", "Juan Ferrera", "Javier Gómez-Gil", "Carlos Mudarra" ], "comment": "9 pages", "categories": [ "math.FA" ], "abstract": "Let $E$ be an arbitrary subset of a Banach space $X$, $f: E \\rightarrow \\mathbb{R}$ be a function, and $G:E \\rightrightarrows X^*$ be a set-valued mapping. We give necessary and sufficient conditions on $f, G$ for the existence of a continuous convex extension $F: X \\rightarrow \\mathbb{R} $ of $f$ such that the subdifferential $\\partial F$ of $F$ coincides with $G$ on $E.$", "revisions": [ { "version": "v1", "updated": "2018-11-13T21:52:53.000Z" } ], "analyses": { "keywords": [ "convex functions", "prescribed subdifferentials", "arbitrary subset", "banach space", "sufficient conditions" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }