{ "id": "1811.05444", "version": "v1", "published": "2018-11-13T18:23:56.000Z", "updated": "2018-11-13T18:23:56.000Z", "title": "Cardinal Characteristics of Models of Set Theory", "authors": [ "Douglas Ulrich" ], "comment": "35 pages", "categories": [ "math.LO" ], "abstract": "We continue our investigation =of Shelah's interpretability orders $\\trianglelefteq^*_\\kappa$ as well as the new orders $\\trianglelefteq^\\times_\\kappa$. In particular, we give streamlined proofs of the existence of minimal unstable, unsimple and nonlow theories in these orders, and we give a similar analysis of the hypergraph examples $T_{n, k}$ of Hrushovski. We also prove that if $\\mathcal{B}$ is a complete Boolean algebra with the $\\lambda$-c.c., then no nonprincipal ultrafilter on $\\mathcal{U}$ $\\lambda^+$-saturates any unsimple theory.", "revisions": [ { "version": "v1", "updated": "2018-11-13T18:23:56.000Z" } ], "analyses": { "subjects": [ "03C55" ], "keywords": [ "set theory", "cardinal characteristics", "complete boolean algebra", "shelahs interpretability orders", "nonprincipal ultrafilter" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }