{ "id": "1811.04484", "version": "v1", "published": "2018-11-11T21:25:10.000Z", "updated": "2018-11-11T21:25:10.000Z", "title": "Homotopy groups of $E_{C}^{hG_{24}}\\wedge A(1)$", "authors": [ "Viet-Cuong Pham" ], "comment": "66 pages, 25 figures", "categories": [ "math.AT" ], "abstract": "Let $A(1)$ be any of the four finite spectra whose cohomology is isomorphic to the subalgebra $A(1)$ of the Steenrod algebra. Let $E_{C}$ be the second Morava-$E$ theory associated to a universal deformation of the formal completion of the supersingular elliptic curve $(C) : y^{2}+y = x^{3}$ defined over $\\mathbb{F}_{4}$ and $G_{24}$ a maximal finite subgroup of automorphism groups $\\mathbb{S}_{C}$ of the formal completion $F_{C}$. In this paper, we will compute the homotopy groups of $E_{C}^{hG_{24}}\\wedge A(1)$ by means of the homotopy fixed point spectral sequence.", "revisions": [ { "version": "v1", "updated": "2018-11-11T21:25:10.000Z" } ], "analyses": { "keywords": [ "homotopy groups", "homotopy fixed point spectral sequence", "formal completion", "maximal finite subgroup", "supersingular elliptic curve" ], "note": { "typesetting": "TeX", "pages": 66, "language": "en", "license": "arXiv", "status": "editable" } } }