{ "id": "1811.04378", "version": "v1", "published": "2018-11-11T09:36:51.000Z", "updated": "2018-11-11T09:36:51.000Z", "title": "Large global solutions for nonlinear Schrödinger equations II, mass-supercritical, energy-subcritical cases", "authors": [ "Marius Beceanu", "Qingquan Deng", "Avy Soffer", "Yifei Wu" ], "comment": "59 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In this paper, we consider the nonlinear Schr\\\"odinger equation, $$ i\\partial_{t}u+\\Delta u= \\mu|u|^p u, \\quad (t,x)\\in \\mathbb R^{d+1}, $$ with $p>0, \\mu=\\pm1$. In this work, we consider the defocusing mass-supercritical, energy-subcritical cases, that is, $p\\in (\\frac4d,\\frac4{d-2}),\\mu=\\pm1$. We prove that under some restrictions on $d,p$, any radial initial data in the rough space $H^{s_0}(\\mathbb R^d), s_0