{ "id": "1811.04204", "version": "v1", "published": "2018-11-10T06:49:47.000Z", "updated": "2018-11-10T06:49:47.000Z", "title": "On the Gradient of Harmonic Functions", "authors": [ "Pisheng Ding" ], "categories": [ "math.CA", "math.AP", "math.DG" ], "abstract": "For a harmonic function u on Euclidean space, this note shows that |grad(u)| is essentially determined by the geometry of level hypersurfaces of u. Specifically, the factor by which |grad(u)| changes along a gradient flow is completely determined by the mean curvature of the level hypersurfaces intersecting the flow.", "revisions": [ { "version": "v1", "updated": "2018-11-10T06:49:47.000Z" } ], "analyses": { "subjects": [ "31B05" ], "keywords": [ "harmonic function", "euclidean space", "gradient flow", "mean curvature" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }