{ "id": "1811.04055", "version": "v1", "published": "2018-11-09T18:29:25.000Z", "updated": "2018-11-09T18:29:25.000Z", "title": "Cusp Universality for Random Matrices II: The Real Symmetric Case", "authors": [ "Giorgio Cipolloni", "László Erdős", "Torben Krüger", "Dominik Schröder" ], "comment": "49 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We prove that the local eigenvalue statistics of real symmetric Wigner-type matrices near the cusp points of the eigenvalue density are universal. Together with the companion paper [arXiv:1809.03971], which proves the same result for the complex Hermitian symmetry class, this completes the last remaining case of the Wigner-Dyson-Mehta universality conjecture after bulk and edge universalities have been established in the last years. We extend the recent Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp regime using the optimal local law from [arXiv:1809.03971] and the accurate local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752]. We also present a novel method to improve the estimate on eigenvalue rigidity via the maximum principle of the heat flow related to the Dyson Brownian motion.", "revisions": [ { "version": "v1", "updated": "2018-11-09T18:29:25.000Z" } ], "analyses": { "subjects": [ "60B20", "15B52" ], "keywords": [ "real symmetric case", "cusp universality", "random matrices", "accurate local shape analysis", "complex hermitian symmetry class" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable" } } }