{ "id": "1811.04044", "version": "v1", "published": "2018-11-09T17:59:53.000Z", "updated": "2018-11-09T17:59:53.000Z", "title": "Nonradial normalized solutions for nonlinear scalar field equations", "authors": [ "Louis Jeanjean", "Sheng-Sen Lu" ], "categories": [ "math.AP" ], "abstract": "We study the following nonlinear scalar field equation $$ -\\Delta u=f(u)-\\mu u, \\quad u \\in H^1(\\mathbb{R}^N) \\quad \\text{with} \\quad \\|u\\|^2_{L^2(\\mathbb{R}^N)}=m. $$ Here $f\\in C(\\mathbb{R},\\mathbb{R})$, $m>0$ is a given constant and $\\mu\\in\\mathbb{R}$ is a Lagrange multiplier. In a mass subcritical case but under general assumptions on the nonlinearity $f$, we show the existence of one nonradial solution for any $N\\geq4$, and obtain multiple (sometimes infinitely many) nonradial solutions when $N=4$ or $N\\geq6$. In particular, all these solutions are sign-changing.", "revisions": [ { "version": "v1", "updated": "2018-11-09T17:59:53.000Z" } ], "analyses": { "subjects": [ "35J60", "58E05" ], "keywords": [ "nonlinear scalar field equation", "nonradial normalized solutions", "nonradial solution", "lagrange multiplier", "mass subcritical case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }