{ "id": "1811.03803", "version": "v1", "published": "2018-11-09T07:36:29.000Z", "updated": "2018-11-09T07:36:29.000Z", "title": "On rationality of generating function for the number of spanning trees in circulant graphs", "authors": [ "A. D. Mednykh", "I. A. Mednykh" ], "comment": "11 pages", "categories": [ "math.CO" ], "abstract": "Let $F(x)=\\sum\\limits_{n=1}^\\infty\\tau(n)x^n$ be the generating function for the number $\\tau(n)$ of spanning trees in the circulant graphs $C_{n}(s_1,s_2,\\ldots,s_k).$ We show that $F(x)$ is a rational function with integer coefficients satisfying the property $F(x)=F(1/x).$ A similar result is also true for the circulant graphs of odd valency $C_{2n}(s_1,s_2,\\ldots,s_k,n).$ We illustrate the obtained results by a series of examples.", "revisions": [ { "version": "v1", "updated": "2018-11-09T07:36:29.000Z" } ], "analyses": { "subjects": [ "05C30", "39A10" ], "keywords": [ "circulant graphs", "spanning trees", "generating function", "rationality", "odd valency" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }