{ "id": "1811.03015", "version": "v1", "published": "2018-11-02T19:29:20.000Z", "updated": "2018-11-02T19:29:20.000Z", "title": "An exponential Diophantine equation related to the difference between powers of two consecutive Balancing numbers", "authors": [ "Salah E. Rihane", "Bernadette Faye", "Florian Luca", "Alain Togbe" ], "comment": "Comments are welcome", "categories": [ "math.NT" ], "abstract": "In this paper, we find all solutions of the exponential Diophantine equation $B_{n+1}^x-B_n^x=B_m$ in positive integer variables $(m, n, x)$, where $B_k$ is the $k$-th term of the Balancing sequence.", "revisions": [ { "version": "v1", "updated": "2018-11-02T19:29:20.000Z" } ], "analyses": { "subjects": [ "11B39", "11J86" ], "keywords": [ "exponential diophantine equation", "consecutive balancing numbers", "difference", "positive integer variables", "th term" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }