{ "id": "1811.02490", "version": "v1", "published": "2018-11-06T17:02:56.000Z", "updated": "2018-11-06T17:02:56.000Z", "title": "$k$-Schur expansions of Catalan functions", "authors": [ "Jonah Blasiak", "Jennifer Morse", "Anna Pun", "Daniel Summers" ], "comment": "33 pages", "categories": [ "math.CO", "math.AG", "math.QA" ], "abstract": "We make a broad conjecture about the $k$-Schur positivity of Catalan functions, symmetric functions which generalize the (parabolic) Hall-Littlewood polynomials. We resolve the conjecture with positive combinatorial formulas in cases which address the $k$-Schur expansion of (1) Hall-Littlewood polynomials, proving the $q=0$ case of the strengthened Macdonald positivity conjecture of Lapointe, Lascoux, and Morse; (2) the product of a Schur function and a $k$-Schur function when the indexing partitions concatenate to a partition, describing a class of Gromov-Witten invariants for the quantum cohomology of complete flag varieties; (3) $k$-split polynomials, proving a substantial case of a problem of Broer and Shimozono-Weyman on parabolic Hall-Littlewood polynomials. In addition, we prove the conjecture that $k$-Schur functions defined in terms of $k$-split polynomials agree with strong tableau $k$-Schur functions.", "revisions": [ { "version": "v1", "updated": "2018-11-06T17:02:56.000Z" } ], "analyses": { "subjects": [ "05E05", "14N15", "14N35", "05A30", "33D52" ], "keywords": [ "catalan functions", "schur expansion", "schur function", "strengthened macdonald positivity conjecture", "complete flag varieties" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }