{ "id": "1811.02237", "version": "v1", "published": "2018-11-06T09:13:29.000Z", "updated": "2018-11-06T09:13:29.000Z", "title": "Laurent phenomenon and simple modules of quiver Hecke algebras", "authors": [ "Masaki Kashiwara", "Myungho Kim" ], "comment": "38 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "We study consequences of a monoidal categorification of the unipotent quantum coordinate ring $A_q(\\mathfrak{n}(w))$ together with the Laurent phenomenon of cluster algebras. We show that if a simple module $S$ in the category $\\mathcal C_w$ strongly commutes with all the cluster variables in a cluster $[ \\mathscr C]$, then $[S]$ is a cluster monomial in $[ \\mathscr C ]$. If $S$ strongly commutes with cluster variables except exactly one cluster variable $[M_k]$, then $[S]$ is either a cluster monomial in $[\\mathscr C ]$ or a cluster monomial in $\\mu_k([ \\mathscr C ])$. We give a new proof of the fact that the upper global basis is a common triangular basis (in the sense of Fan Qin) of the localization $\\widetilde A_q(\\mathfrak{n}(w))$ of $A_q(\\mathfrak{n}(w))$ at the frozen variables. A characterization on the commutativity of a simple module $S$ with cluster variables in a cluster $[ \\mathscr C]$ is given in terms of the denominator vector of $[S]$ with respect to the cluster $[ \\mathscr C]$.", "revisions": [ { "version": "v1", "updated": "2018-11-06T09:13:29.000Z" } ], "analyses": { "subjects": [ "13F60", "81R50", "17B37" ], "keywords": [ "simple module", "quiver hecke algebras", "laurent phenomenon", "cluster variable", "cluster monomial" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }