{ "id": "1811.01888", "version": "v1", "published": "2018-11-05T18:06:58.000Z", "updated": "2018-11-05T18:06:58.000Z", "title": "Narrow quantum D-modules and quantum Serre duality", "authors": [ "Mark Shoemaker" ], "comment": "40 pages, comments welcome", "categories": [ "math.AG" ], "abstract": "Given Y a non-compact manifold or orbifold, we define a natural subspace of the cohomology of Y called the narrow cohomology. We show that despite Y being non-compact, there is a well-defined and non-degenerate pairing on this subspace. The narrow cohomology proves useful for the study of genus zero Gromov-Witten theory. When Y is a smooth complex variety or Deligne-Mumford stack, one can define a quantum D-module on the narrow cohomology of Y. This yields a new formulation of quantum Serre duality.", "revisions": [ { "version": "v1", "updated": "2018-11-05T18:06:58.000Z" } ], "analyses": { "subjects": [ "14N35", "14E16", "53D45" ], "keywords": [ "quantum serre duality", "narrow quantum d-modules", "narrow cohomology", "genus zero gromov-witten theory", "smooth complex variety" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }