{ "id": "1811.01613", "version": "v1", "published": "2018-11-05T11:09:36.000Z", "updated": "2018-11-05T11:09:36.000Z", "title": "On the zeros of Epstein zeta functions near the critical line", "authors": [ "Yoonbok Lee" ], "categories": [ "math.NT" ], "abstract": "Let $Q$ be a positive definite quadratic form with integral coefficients and let $E(s,Q)$ be the Epstein zeta function associated with $Q$. Assume that the class number of $Q$ is bigger than $1$. Then we estimate the number of zeros of $E(s,Q)$ in the region $ \\Re s > \\sigma_T ( \\theta ) := 1/2 + ( \\log T)^{- \\theta}$ and $ T < \\Im s < 2T$, to provide its asymptotic formula for fixed $ 0 < \\theta < 1$ conditionally. Moreover, it is unconditional if the class number of $Q$ is $2$ or $3$ and $ 0 < \\theta < 1/13$.", "revisions": [ { "version": "v1", "updated": "2018-11-05T11:09:36.000Z" } ], "analyses": { "keywords": [ "epstein zeta function", "critical line", "class number", "positive definite quadratic form", "asymptotic formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }