{ "id": "1811.00857", "version": "v1", "published": "2018-11-02T13:46:54.000Z", "updated": "2018-11-02T13:46:54.000Z", "title": "Normally ordered forms of powers of differential operators and their combinatorics", "authors": [ "Emmanuel Briand", "Samuel A. Lopes", "Mercedes Rosas" ], "comment": "Comments welcome!", "categories": [ "math.CO", "math.RA" ], "abstract": "We investigate the combinatorics of the general formulas for the powers of the operator $h \\partial^k$, where $h$ is a central element of a ring and $\\partial$ is a differential operator. This generalizes previous work on the powers of operators $h \\partial$. New formulas for the generalized Stirling numbers are obtained.", "revisions": [ { "version": "v1", "updated": "2018-11-02T13:46:54.000Z" } ], "analyses": { "keywords": [ "normally ordered forms", "differential operator", "combinatorics", "central element" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }